Streamlined mean field variational Bayes for longitudinal and multilevel data analysis.

نویسندگان

  • Cathy Yuen Yi Lee
  • Matt P Wand
چکیده

Streamlined mean field variational Bayes algorithms for efficient fitting and inference in large models for longitudinal and multilevel data analysis are obtained. The number of operations is linear in the number of groups at each level, which represents a two orders of magnitude improvement over the naïve approach. Storage requirements are also lessened considerably. We treat models for the Gaussian and binary response situations. Our algorithms allow the fastest ever approximate Bayesian analyses of arbitrarily large longitudinal and multilevel datasets, with little degradation in accuracy compared with Markov chain Monte Carlo. The modularity of mean field variational Bayes allows relatively simple extension to more complicated scenarios.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semiparametric Mean Field Variational Bayes: General Principles and Numerical Issues

We introduce the term semiparametric mean field variational Bayes to describe the relaxation of mean field variational Bayes in which some density functions in the product density restriction are pre-specified to be members of convenient parametric families. This notion has appeared in various guises in the mean field variational Bayes literature during its history and we endeavor to unify this...

متن کامل

Online Variational Bayes Inference for High-Dimensional Correlated Data

High-dimensional data with hundreds of thousands of observations are becoming commonplace in many disciplines. The analysis of such data poses many computational challenges, especially when the observations are correlated over time and/or across space. In this paper we propose flexible hierarchical regression models for analyzing such data that accommodate serial and/or spatial correlation. We ...

متن کامل

A Comparison of Variational Bayes and Markov Chain Monte Carlo Methods for Topic Models

Latent Dirichlet Allocation (LDA) is Bayesian hierarchical topic model which has been widely used for discovering topics from large collections of unstructured text documents. Estimating posterior distribution of topics as well as topic proportions for each document is the goal of inference in LDA. Since exact inference is analytically intractable for LDA, we need to use approximate inference a...

متن کامل

Functional regression via variational Bayes.

We introduce variational Bayes methods for fast approximate inference in functional regression analysis. Both the standard cross-sectional and the increasingly common longitudinal settings are treated. The methodology allows Bayesian functional regression analyses to be conducted without the computational overhead of Monte Carlo methods. Confidence intervals of the model parameters are obtained...

متن کامل

Mean field variational Bayesian inference for nonparametric regression with measurement error

A fast mean field variational Bayes (MFVB) approach to nonparametric regression when the predictors are subject to classical measurement error is investigated. It is shown that the use of such technology to the measurement error setting achieves reasonable accuracy. In tandem with the methodological development, a customized Markov chain Monte Carlo method is developed to facilitate the evaluat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biometrical journal. Biometrische Zeitschrift

دوره 58 4  شماره 

صفحات  -

تاریخ انتشار 2016